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What’s the Best Way to Characterize the Relationship Between Working
Memory and Achievement?: An Initial Examination of Competing Theories

Dana Miller-Cotto
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James P. Byrnes
Temple University

Although studies have demonstrated a relationship between working memory and achievement in math
and reading, it is still unclear why working memory might be related to these abilities. In the present
article, we examined the viability of several possible theories in 2 separate analyses of math and reading.
In each case, we contrasted the predictions of a cognitive filter model, a transactional model, and a
positive manifold model using data from the 2011 Early Childhood Longitudinal Study Kindergarten
(ECLS-K). Results of path analyses in a structural equation modeling (SEM) framework indicated an
excellent fit for the transactional model, while a poor fit was shown for the other 2 models for both math
and reading. Findings across these analyses suggested that working memory and achievement interact in
a reciprocal, recursive manner over time. Findings are discussed in terms of their implications for theory,
practice, and future research.

Educational Impact and Implications Statement
The current study demonstrated support for prior theories that suggested that working memory and
prior knowledge work together in an interactive nature over time. That is, the relationship between
working memory and achievement may be explained by an individual’s ability to retrieve informa-
tion from long-term memory. This was the case for both math and reading, two domains that have
often been seen as very distinct. Findings highlight the importance of understanding the mechanisms
underlying the associations between working memory and math or reading ability to improve these
skills.
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Working memory (WM), or a processing resource of limited
capacity involved in the preservation of information while simul-
taneously processing the same or other information (Unsworth &
Engle, 2007), is related to numerous other cognitive abilities
employed in everyday life (Diamond, 2013). When creating a
mental grocery list, one may need to recall it in the grocery store
while also keeping track of the amount of spending money one has
as items are added to a shopping cart. In the laboratory, one would
use working memory when being asked to listen to a string of
numbers and repeat the numbers in reverse, sometimes in the form
of an n-back task of IQ tests that includes letters or numbers
(Conway et al., 2005). In these tasks, the individual is required to
first attempt to remember the number or letter string, manipulate

the number order, and repeat the numbers aloud in the reverse
order (Conway et al., 2005).

In education, it is well-established that WM is correlated both
concurrently and longitudinally with mathematics and reading
achievement (Byrnes, Miller-Cotto, & Wang, 2018; Peng et al.,
2018). Recent meta-analyses have revealed that the average
weighted correlation between working memory and math achieve-
ment is r � .35, and the average weighted correlation between
working memory and reading is r � .29, respectively (Peng et al.,
2018; Peng, Namkung, Barnes, & Sun, 2016). In addition, WM
deficits appear to lie at the heart of both mathematical disabilities
and reading disabilities (Kudo, Lussier, & Swanson, 2015; Swan-
son, 2015). Given the correlations suggesting that higher working
memory capacity is associated with better math and reading per-
formance, it seems important to understand the nature of this
relationship to help those most in need.

Thus, whereas the associations between WM and both math and
reading achievement are now beyond dispute, the precise manner
in which WM plays a role in these two abilities is still not entirely
clear, though several proposals have been advanced (e.g., Perfetti
& Stafura, 2014; Raghubar, Barnes, & Hecht, 2010). In the current
study, we sought to better understand in what ways WM abilities
relate to math and reading as a means of providing insight into the
reasons for the similar correlations between WM and both con-
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structs. We also hoped to contribute to ongoing debates about
whether WM is domain general or domain specific (Peng & Fuchs,
2016). Theory and research suggest that WM could be related to
math and reading achievement in at least three ways. In what
follows, we consider the three proposals for math and reading in
turn.

The Cognitive Filter Model

Two of these proposals have their roots in classical information
processing (IP) theory (Newell & Simon, 1972). In IP theory, the
human mind is said to be a limited capacity processing system. The
limitations of this system manifest themselves in two ways.
One form is reflected in the fact that people cannot process all of
the information in a situation, so they selectively encode only some
of this material (Newell & Simon, 1972). In more recent formu-
lations, WM is said to act as a kind of cognitive or bottleneck filter
that lets in only a subset of the information that is presented to
students (Alloway & Alloway, 2010; Robison, Miller, & Un-
sworth, 2018; Swanson & Fung, 2016; Sweller, 2011). If the
amount of information exceeds children’s WM capacity because
(a) it cannot be “chunked,” (b) children fail to limit their attention
to just relevant items, or (c) external aids do not reduce the load in
some manner, children will fail to process all of the relevant
information. In this article, we refer to this proposal as the cogni-
tive filter model.

For instance, proponents of theories aligned with the cognitive
filter model, like cognitive load theory (Sweller, 2011), suggest
one way to reduce the strain on working memory resources is to
learn from worked examples, or a worked-out problem that shows
the solution steps. Cognitive load theorists argue that problem
solving without such supports taxes one’s working memory, in-
creasing the problem’s intrinsic load. When the intrinsic load is
increased, the learner may fail to attend to the relevant aspects of
the problem and will not transfer this knowledge to similar prob-
lems that they might encounter (Sweller, 2011). Worked examples
are said to reduce the intrinsic load of the problem and allow
learning of relevant information. Similarly, one critical factor in
determining the effectiveness of problems is their structure. Poorly
designed worked examples can also tax working memory re-
sources. For instance, when a worked example uses various
sources of information in different formats on the same page (e.g.,
graphics and text), learning may not occur and can even be
deleterious to learning (the so-called split-attention effect; Ward &
Sweller, 1990). Atkinson and colleagues (Atkinson, Derry, Renkl,
& Wortham, 2000) emphasize integrating features within worked
examples to avoid imposing a heavy extraneous load as what
occurs with the split-attention effect (Sweller, 2012).

Relationship to Math

Processing limitations are also manifested when people try to
solve problems and need to keep directions, the results of substeps,
and so on in their minds. Whereas the cognitive filter model
pertains to learning or knowledge acquisition, the second proposal
suggests that WM could affect performance even after skills are
learned as people solve problems that require them to keep direc-
tions, goals, and the results of preceding steps in mind. Perfor-
mance could drop if too much information has to be held in mind
(e.g., Hitch, 1978).

Of the two proposals regarding processing limitations, the cog-
nitive load version probably plays a more decisive role across an
academic year because students probably do not encounter school
tasks in which everything has to be kept in mind (e.g., they can
write down steps). If so, cognitive load theory and its variants
would predict that students with higher levels of WM can attend to
and retain more of the information presented during math lessons
that their peers who have lower WM capacity. However, this
prediction assumes that teachers do little to reduce cognitive load
during lessons. As noted above, there are steps that can be taken to
reduce cognitive load during problem solving, such as presenting
worked examples and fading, or removing steps in a problem
successively, the problem-solving steps (Sweller, 2011; Zamary &
Rawson, 2018). When cognitive load is reduced, students can learn
how to solve the problems. In any event, in practice, the theoretical
distinction between the two kinds of limitations probably does not
play out in a typical math lesson because most lessons involve
teaching children how to solve computational problems. WM
limitations would interfere with the acquisition of declarative,
conceptual, and procedural knowledge according to the cognitive
filter model and its related corollaries in cognitive load theory
(Sweller, Van Merrienboer, & Paas, 1998). For this model, one
might envision math knowledge passing through WM, or filtered
through WM, to predict later performance, as demonstrated in
Figure 1 for the cognitive filter model. As can be seen in Figure 1,
there are paths (arrows) extending from both prior WM (e.g.,
WM1) and prior math (e.g., Math 1) to later math (Math 2), but not
from prior math to later WM. However, there is no reason to
expect that prior mathematics achievement would affect later WM
if a theorist considers it to be a relatively fixed individual differ-
ence variable.

Relationship to Reading

A longstanding view of the role of WM in reading is that WM
functions as a limited processing space within which the meaning
of a sentence can be computed (Caplan & Waters, 1999; Daneman
& Carpenter, 1980). When reading times are increased by increas-
ing sentence length, the number of unfamiliar or infrequent words,
or grammatical complexity, comprehension suffers, particularly
for people with less WM capacity. Stated this way, it can be seen
that this account would be the analogue of the cognitive filter
model described above for mathematics. Comprehension is dem-
onstrated by asking readers to recall the meaning of a passage that
was just read or answer comprehension questions about the pas-
sage. If WM capacity keeps people from processing sentences
completely, less information would be processed and stored in
LTM, or filtered, as suggested above for mathematics. Just as math
problems can be constructed to reduce the cognitive load of the

 
 
 
 
 
 
 

Math 1 Math 2 Math 3 

WM 1 WM 2 WM 3 

Figure 1. The cognitive filter model. Both WM and prior math determine
later math, but prior math does not affect later working memory.
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material (e.g., using faded worked examples), texts can be modi-
fied to make them more “readable” by making sentences shorter,
less grammatically complex, and include only high frequency
words (Byrnes & Wasik, 2008). If WM capacity is a relatively
stable individual difference variable (as argued in influential works
such as Daneman & Carpenter, 1980), then WM would predict
concurrent and later reading comprehension. Earlier reading com-
prehension, however, would not be expected to predict or affect
later WM capacity according to this cognitive filter model. Thus,
we anticipate that for the cognitive filter performance would be
predicted by earlier WM capacity, as demonstrated in Figure 1.
But cognitive filter models do not anticipate that prior reading
achievement would affect or predict later WM capacity. Once
again, WM capacity is viewed as both an individual difference
variable and processing resource that affects reading comprehen-
sion in the moment. Traditional cognitive filter models do not
assume that prior reading performance and practice would affect
WM capacity in individual students. As with math, there are paths
(arrows) extending from both prior WM (e.g., WM1) and prior
reading (e.g., Reading 1) to later reading (Reading 2), but not from
prior reading to later WM.

Transactional Model

Besides the cognitive filter model, a second theoretical model
that derives from research on the nature of WM proposes that WM
tasks not only measure the ability to manipulate, attend to, and
store information that is temporarily held in mind, these tasks also
provide an index of the ability to retrieve information from long
term memory (LTM; Unsworth, 2010; Unsworth, Spillers, &
Brewer, 2012). This theory assumes that when the number of items
that have to be maintained in WM exceeds some level, the excess
items are off-loaded to LTM for later retrieval. This proposal is
supported from studies showing a strong correlation between WM
and LTM retrieval tasks. As the chief architect of the construct of
WM, Alan Baddeley (2010, p. 5) notes:

. . . it is unsurprising that neuroimaging studies of short-term or
working memory tasks also tend to activate areas associated with
long-term memory. The crucial question is not whether long-term
memory is involved in working memory, but how. In what ways do
long-term and working memory interact?

Some findings suggest that students with higher levels of WM
capacity develop more robust or distinct representations of mate-
rial; upon retrieving this material from LTM, they are better able
to identify the correct items and avoid confusions (Jones &
Macken, 2015). Relatedly, it has been claimed that students with
higher levels of WM capacity are less susceptible to interference
effects (Hedden & Yoon, 2006; Van Dyke, Johns, & Kukona,
2014). Therefore, the concurrent and longitudinal relations be-
tween WM and math achievement tasks may reflect a problem of
retrieval from LTM for low WM students rather than (or in
addition to) a filtering issue or a problem of the lesser ability to
temporarily holding information in mind. Moreover, this LTM
proposal is also consistent with the finding that a key diagnostic
criterion for children diagnosed with mathematics disability is a
developmental delay in the retrieval of math facts (Geary, Hoard,
& Bailey, 2012). The linkage between WM and LTM also suggests
that retrieval problems for particular items could lessen over time

as (a) knowledge slowly accumulates, (b) aspects of math knowl-
edge become better integrated, and (c) the same information is
encountered repeatedly (Ericsson & Kintsch, 1995; Jones &
Macken, 2015).

Relationship to Math

The transactional model suggests that low WM could affect
concurrent performance on achievement tests because children
have difficulty recalling the correct information and avoiding
interference effects as they are being tested. The opposite would be
the case for children with higher levels of WM capacity. However,
given at least short-term stability in WM capacity, WM capacity in
the fall would also predict math achievement in the spring, but
would not reflect only a filtering or bottleneck process. Rather, the
predictive relation would reflect consistency in retrieval problems
across the academic year. Thus, WM tested at Time 1 would
predict math performance at Time 2. Given the cascading effects
of knowledge on WM (Ericsson & Kintsch, 1995), however, it
would be expected that math achievement at Time 2 might also
predict WM performance at Time 3. Thus, there would be both
concurrent and cross-lagged relationships over time. In this article,
we refer to this kind of model as the transactional model. It shares
with the cognitive filter model the idea that processing limitations
could affect what is learned in any math lesson. It differs from the
cognitive filter model in that the former assumes relatively stable
individual differences in WM capacity that solely determine how
much children assimilate from classroom experiences over time.
According to the cognitive filter model, these individual differ-
ences in WM would not be affected by the mathematical knowl-
edge of students (Alloway & Alloway, 2010; Robison et al., 2018;
Swanson & Fung, 2016; Sweller, 2011). In contrast, the transac-
tional model assumes that WM performance would be affected by
accumulating math knowledge (and vice versa). The transactional
model is depicted in Figure 2.

In support of the transactional model, Jones and Macken (2015)
investigated whether previous experience affected performance
with different types of digit span tasks. Participants were exposed
to number spans and digit spans. Sequences were presented more
than once to increase participants’ familiarity with the sequences.
Collective results indicated frequency, not experience, mattered.
However, the findings still beg the question of the role of long-
term memory on short term memory processes.

As an empirical model then, as demonstrated in Figure 2, we
envision WM tested at Time 1 would predict math performance at
Time 2, and keeping in mind the cascading effects of knowledge
on WM, it would be expected that math achievement at Time 2
might also predict WM performance at Time 3. In other words,

Math 1 Math 2 Math 3 

WM 1 WM 2 WM 3 

  

  

   

Figure 2. The transactional model. Prior math and prior WM both di-
rectly influence each other; but prior math influences later WM and vice
versa recursively over time.
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prior math and prior WM both directly influence each other; but
prior math influences later WM and vice versa recursively over
time. This relationship is demonstrated in Figure 2.

Relationship to Reading

An alternative view also exists that represents a synthesis of
prior reading and working memory research (e.g., Peng, Wang,
Wang, & Lin 2019; Perfetti & Stafura, 2014). In the lexical quality
hypothesis (Perfetti, 2007) “word knowledge is paramount to
reading skills, suggesting the importance of spelling/vocabulary
expertise in reading comprehension (Perfetti & Stafura, 2014).
High-quality form knowledge includes phonological specificity,
the lack of which has been linked to problems in reading and word
learning (Elbro, 1998; Elbro & Jensen, 2005). It also includes
orthographic precision.” Thus, reading comprehension requires the
ability to rapidly retrieve the right pronunciation and contextually
appropriate meaning of individual words as they are encountered
in a sentence. These meanings should reflect frequency of occur-
rence (more common meanings are retrieved more rapidly) but
frequency should be overridden when the most common meaning
is contextually inappropriate (Perfetti & Stafura, 2014). To say that
a lexical representation is “high quality” is to say that it allows
rapid retrieval of the right meanings and pronunciation, as well as
inhibition of incorrect pronunciations and meanings.

Studies have shown that poor readers fail to inhibit the more
frequent word meanings and retrieve the less frequent meaning
(Perfetti & Stafura, 2014). This finding is highly similar to the
point earlier that people with low WM have trouble retrieving the
right math facts from LTM and are susceptible to interference
effects. Peng et al. (2018) argued that according to the dual
processing theory (Evans & Stanovich, 2013) long-term memory
determines how WM is employed during a reading task, suggest-
ing that WM’s role in retrieval may be more important than
reading itself. According to this account, comparing experienced
readers and novice readers, novice readers likely need to allocate
more of their WM resources to searching in long-term memory and
integrating less newly acquired phonological and orthographic
representations, representations necessary to perform vocabulary
tasks. However, Peng and colleagues (2018) argue that this model
does not account for developmental changes between the relation-
ship between WM and reading over time.

If what really lies at the heart of individual differences in WM
is the ability to retrieve the right items from LTM and avoid
interference effects, a model that combines the lexical quality
model and dual processing theory should be seen to be the ana-
logue of the transactional model described above for mathematics.
Thus, it would be predicted that WM capacity at Time 1 would
predict reading at Time 2, but reading at Time 2 would also predict
WM at Time 3. This argument is very similar to Stanovich’s
(1986) idea of “reciprocal causation” (like the reciprocal nature of
Figure 2) in which abilities such as phonological processing and
vocabulary predict early reading skills, but reading also tends to
improve phonological processing and vocabulary. Demoulin and
Kolinsky (2016) make a similar argument and present some sug-
gestive evidence but note that the vast majority of studies have
examined the predictive role of WM for later reading, but not the
other way around. One study (Ellis, 1990) that tried to examine
this predicted cascading relationship found that earlier reading was

not a significant predictor of WM using structural equation mod-
eling (SEM), but there were only 40 participants in that study. WM
may play a role in the acquisition and immediate retention of
information, but once someone is encountering a task, the func-
tioning cognitive variable is likely to be access to relevant knowl-
edge; then, WM has already made its main contribution. When one
controls for vocabulary, which is seldom done, WM seems to have
less impact. Thus, the transactional model holds promise but has
yet to be examined in a direct and methodologically sound way
using a large sample.

The Positive Manifold Model

In addition to the aforementioned models, there is also a third
possible explanation for the correlations between WM, reading,
and math. It is commonly observed in the intelligence literature
that many cognitive tasks seem to correlate with each other at a
level of around r � .30 because each task presumably requires
underlying abilities or processes that are common to all of the tests
(Burkart, Schubiger, & van Schaik, 2017). The presence of
this so-called “positive manifold” often serves as the basis for
claims regarding the existence of general or “g” intelligence.
Given that recent meta-analyses showed that the average correla-
tion between WM and math performance is approximately r � .30
(Peng, Barnes et al., 2018; van der Maas, Kan, & Borsboom,
2014), it is possible that WM neither acts as a filter nor indexes the
ability to retrieve items from LTM but, rather, WM and math are
correlated because they share some underlying processes or skills
(Kovacs & Conway, 2016; Sternberg, 2016). Some of these skills
may include allocating attention or keeping substeps to a problem
stored and manipulated in WM. Moreover, it should also be noted
that many intelligence tests often include measures of WM capac-
ity as subtests. Thus, WM may not promote or facilitate the
acquisition or learning of math skills over time. Rather, the cor-
relation that is observed may simply reflect the “g” abilities that
are common to WM and math tasks. We call this third possible
explanation of the relationship between WM and math, the positive
manifold model. It is depicted in Figure 3.

Relationship to Math

The positive manifold assumes that WM and ability share an
underlying, common factor. Thus, one might assume that WM and
ability would be highly correlated because they might essentially
be measuring the same construct. As we demonstrate in Figure 3,
we expect that an empirical model would include paths that are
highly correlated, with WM and math ability regressed arrows on

 
 
 
 
 
 
 

Math 1 Math 2 Math 3 

WM 1 WM 2 WM 3 

Figure 3. The positive manifold model. Prior math influences later math,
and prior working memory influences later working memory, but not
cross-lagged effects; working memory and math are correlated concur-
rently.
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to one another because they share an underlying construct, and also
predicting both WM and math ability at later time points.

Regarding the literature in this area, Swanson, Jerman, and
Zheng (2008) investigated the role of growth in working memory
in solving math problems, including skills like assessing problem
solving ability, achievement, and students’ working memory, in-
hibition, naming speed, and phonological coding at first grade,
second grade, and third grade. Students who exhibited poor work-
ing memory showed less growth and lower levels of performance.
This was particularly the case if they were deemed at risk for math
problem solving difficulties during the first wave. Specific to
arithmetic computation, children with poor counting and the in-
ability to remember single digits also tended to have working
memory deficits (Siegel & Ryan, 1989).

Relationship to Reading

As was the case for math, there is a third alternative model of the
relation between WM and reading. As noted earlier, meta-analyses
have shown the average weighted correlation between WM and
reading to be r � .29 (Peng et al., 2018), about the size of the .30
correlation that emerges in studies demonstrating the positive
manifold. The third hypothesis would be, then, that the correlation
between WM and reading emerges because these two abilities
have some cognitive operations in common such as utilization of
the language areas of the superior temporal lobe (Caplan & Wa-
ters, 1999). If factor analysis were to be applied to measures of
reading and IQ, their loading on the same factor would reflect “g”
intelligence. If this third model is true, then one would find only
concurrent correlations in a longitudinal study, rather than the
mutually predictive, cross-lagged predictors specified in the trans-
actional model.

The Current Study

Recent meta-analyses have shown that the medium-sized asso-
ciation between WM and mathematical and reading abilities is
beyond dispute. However, it is still not yet clear why correlations
of this size are frequently observed. Peng et al. (2018) and Quinn,
Wagner, Petscher, and Lopez (2015) have contributed meta-
analyses that include some discussion of the findings according to
theoretical accounts. However, the current study differs from these
meta-analyses in the following ways. First, a meta-analysis only
establishes whether two variables are related and how large the
weighted average effect is. When the size of the correlations seem
associated with specific moderators, these moderators operate
across different studies. In addition, there are no controls for other
variables or the ability to test different models of interactions over
time. The question of why WM correlates with either math or
reading has been vexing cognitive psychologists for years and
there have been vigorous debates. The results of prior meta-
analyses only partially help to resolve these debates, but more
work must be done.

Further, not all of the existing meta-analyses examine the three
theories contrasted in this study, neither of the aforementioned meta-
analyses theorize why we might expect similar correlations between
WM and math and WM and reading. In addition, theories of math
ability and reading ability refer to distinct processes (e.g., lexical
access and inference making for reading, mental computation and

problem solving for math), and cognitive neuroscientific studies show
that there is some overlap of function in brain areas but considerable
differences as well (Byrnes & Eaton, in press). Thus, we do not think
there are a priori reasons for assuming the same variables would
predict in exactly the same way. More specifically, we were interested
in the following research questions:

1. When comparing the cognitive filter, the transactional
model, and the positive manifold model, which model
best fits the data?

2a. Is model fit consistent for math and reading?

2b. If the models are indeed different between the domains,
in what ways?

Method

Sample

The Early Childhood Longitudinal Study of Kindergarten Co-
hort, 2011 (ECLS-K: 2011) was sponsored by U.S. federal agen-
cies to provide reliable and comprehensive data on a national
sample of children followed from kindergarten to fifth grade using
psychometrically sound instruments (Tourangeau et al., 2013). It is
a follow-up study to the original ECLS-K study that was con-
ducted between 1998 and 2007. The rationale for the follow-up
was that a number of important demographic shifts and govern-
ment policies had taken place since the 1990s that could poten-
tially have had an effect on several key developmental outcomes
(e.g., No Child Left Behind legislation; increase in school choice;
increase in immigrant children). Although children from all 50
states were recruited in both studies, neither sample should be
considered nationally representative per se because of intentional
oversampling of low incidence groups to obtain reliable estimates
(e.g., American Indians; Private School students). Across the first
three waves of data collection, the number children who had
mathematics and reading achievement scores were 17,140 (end of
K), 15,103 (end of first grade), and 13,830 (end of second grade).
Our analytic sample included 13,480 children who had achieve-
ment data in all three grades. Sample sizes at each time point are
rounded to the nearest tenths per ECLS guidelines. The demo-
graphic breakdown of the sample was as follows: 49% female;
47.6% White, 11.3% African American, 24.6% Hispanic, 8.5%
Asian, and 8% “Other” race/ethnic groups. Most (86%) of the
children’s home language was English.

Measures

Working memory. In the ECLS-K data set, WM is measured
using the numbers reversed subtest of the Woodcock-Johnson III
(WJ III) Tests of Cognitive Abilities (Woodcock, McGrew, &
Mather, 2001). This task requires children to repeat back a series
of numbers in the reverse order that was said by the tester (e.g., 4,
2 for the sequence 2, 4). Trials started with two digits in a series
and then the number of digits is successively increased as the
student correctly recalls them in the reverse order in which they
were recited. The assumption is that students with more WM
capacity are more able to correctly recall these numbers and also
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manipulate them in the reverse order than their peers with lower
WM. ECLS-K data sets used item response theory (IRT) modeling
to convert raw scores into WM ability scores in order to account
for the fact that more difficult trials are more discriminating with
respect to WM (i.e., passing later trials is more indicative of
capacity than passing earlier trials). Working memory was as-
sessed in the fall of students’ kindergarten school year and again
every subsequent year. In the current study, we focused on kin-
dergarten (Year 1), end of first grade (Year 2), and end of second
grade (Year 3). Means and standard deviations are presented in
Table 1. Regarding the Woodcock Johnson WM measure more
generally, scores tend to range from 250 to 550, with an average
score being around 450. For interpretation, 10-year-olds tend to
score around 500 on this test, whereas a 3-year-olds perform closer
to 420 (Schrank, McGrew, & Mather, 2014). For interpretability,
quartile scores are presented in Table 2. In the standardization
sample and in the ECLS-K sample, the reliability of the WM
subtest of the WJ III ranged between .90 and .91 for children in
Grades K through third.

Math achievement. We included math achievement at the
end of kindergarten, end of first grade, and end of second grade.
End-of-year mathematics achievement was measured by ECLS-K
field agents at kindergarten entry using a standardized mathemat-
ics assessment that measured children’s conceptual knowledge,
procedural knowledge, and problem-solving within specific
strands. These strands included number sense, properties and op-
erations; another was patterns, algebra and functions, though the
largest proportion of items at all grade levels focused on the
“number sense, properties and operations” strand (Tourangeau et
al., 2013). Test items were designed to tap a broad range of skills
that are typically taught, important skills for that grade, and con-
sistent with national and state standards (e.g., National Assessment
of Educational Progress, National Council of Teachers of Mathe-
matics, etc.). Spanish versions of the assessment were adminis-
tered to children who did not pass the screener test in English. IRT
modeling, which was done by ECLS-K data researchers before
being made available to the public, was used to create scores that
could be compared across time (Tourangeau et al., 2013). A
two-stage adaptive test was used to measure these constructs,
involving a routing test to ascertain where a student was located
developmentally throughout a sequence of items, ending with a
second stage of grade appropriate items. This was done to
ensure that a student did not take all items while still attaining
an accurate score. Regarding the math ability measure more
generally, scores tend to range from 6.26 to 95.23 kindergarten,
with an average score being around 30. For interpretability,

scores by percentile are included in Table 2. The math scale has
excellent psychometric properties (� � .93–.94; see Table 1 for
means and standard deviations).

Reading achievement. End-of-year reading achievement was
measured by ECLS-K field agents at kindergarten entry using a
standardized reading assessment that measured children’s basic
skills (e.g., print familiarity, letter recognition) and sight vocabu-
lary, decoding, vocabulary, and passage comprehension using a
variety of literary genres (e.g., poetry, letters, fiction, and nonfic-
tion; Tourangeau et al., 2013). Test items were designed to tap a
broad range of skills that are typically taught, important skills for
that grade, and consistent with national and state standards (e.g.,
National Assessment of Educational Progress, National Council of
Teachers of Mathematics, etc.). A Spanish version of the assess-
ment was administered to children who did not pass the screener
test in English. IRT modeling was used to create scores that could
be compared across time and in order to give more weight to more
difficult items, which was done by the ECLS-K data team before
being made available (Tourangeau et al., 2013). Regarding the
reading ability measure more generally, scores tend to range from
21.51 to 90.35, with an average score being around 37.28. For
interpretability, scores by quartile are included in Table 1. The
reading achievement measure also had excellent psychometric
properties after being field tested and constructed by specialists at
ETS (alphas � .93 to .95 at each grade).

Analytic Strategy

The analysis was conducted in several stages. Descriptive sta-
tistics (i.e., frequencies, skewness, kurtosis) were examined to
assess non-normality, outliers, and general data input errors; there
was no indication of these found in the data. We then used Mplus
to conduct path analyses. Data were missing on less than 1% of

Table 1
Descriptive Statistics for Working Memory, Math, and Reading Achievement

Working memory Math achievement Reading achievement

K First Second K First Second K First Second

Mean 450 470 481 45.7 67.0 81.2 61.2 83.8 95.9
SD 30.5 25.7 23.2 12.2 15.3 13.8 13.6 15.6 12.3
% missing .4% .2% .1% .4% .2% .1% .4% .2% .1%
25th percentile 426 448 470 36.76 57.20 72.93 52.1 73.4 90.3
50% percentile 448 476 483 45.70 66.64 83.60 59.8 86.3 98.4
75th percentile 476 489 496 53.49 78.30 91.25 68.6 95.8 105

Table 2
Correlations Among Math and Working Memory Variables

Working memory Math achievement

K First Second K First Second

WM-K — .52 .45 .63 .59 .58
WM-first — .54 .54 .58 .57
WM-second — .49 .51 .56
Math-K — .82 .77
Math-first — .85
Math-second —
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cases, depending on the variable (see Table 1). While it could be
argued that such a small amount of missing data would not lead to
excessively biased estimates, casewise deletion would lead to a
loss of several hundred cases. Further, using casewise deletion is
problematic when the data are not missing at random and reducing
the N can increase the risk of a Type II error. Moreover, the data
were not missing at random according to MCAR analyses. There-
fore, we elected to correct for missingness using Mplus to maxi-
mize sample size and reduce possible bias in estimates (Allison,
2001; Enders, 2010; Rubin, 1987). Although a number of options
exists for analyzing structural equation models with missing data,
the authors chose full information maximum likelihood (FIML)
estimation over multiple imputation (MI) for the following rea-
sons: (a) FIML parameters are unbiased and efficient under MAR,
including the more stringent MCAR condition (Enders, 2006); and
(b) FIML parameters and standard error estimates are not imputed
but estimated directly from the observed data by applying iterative
computational algorithms to the sample log-likelihood (Enders,
2006).

To assess model fit, we used the following fit indicators: CFI
(comparative fit index), TLI (Tucker-Lewis Index), RMSEA (root
mean squared error of approximation), SRMR (standardized root-
mean-square residual), and chi square (Kline, 2011). Models that
fit the data well are indicated by a CFI � .95, RMSEA � .06, and
SRMR � .09 (Hu & Bentler, 1999; Kline, 2011). Good model fit
is indicated by a CFI � .90, RMSEA � .08, and SRMR � .08 (Hu
& Bentler, 1999). Path models were chosen over structural equa-
tion models because there were not multiple indicators of WM,
math achievement, and reading achievement in the dataset so it
was not possible to derive latent factors. IRT modeling does,
however, product ability scores that are comparable to latent
factors (Embretson & Reise, 2013).

Results

Analysis I: WM and Math Achievement

We began model testing by first testing the cognitive filter
model using path analyses. In the cognitive filter model, later math
achievement is influenced directly by prior math achievement
(indicated by the solid lines along the top in Figure 1) and indi-
rectly as the function of prior WM (indicated by dotted lines); later
WM is only affected by prior WM, as shown in Figure 1. Even
after adjusting the model by dropping nonsignificant paths and
adding features suggested by modification indices in Mplus, fit for
the cognitive filter model was relatively poor concerning the size
of the chi-squares, RMSEA, and SRMR with little specific areas of
fit improvement, �2(8) � 3,364.51, p � .001, CFI � .938, TLI �
.884, RMSEA � .176 (.171–.181), SRMR � .069. The correla-
tions within and between the WM and math outcomes for the 3
years are shown in Table 2.

Next, we examined the fit of the positive manifold model (see
Figure 2). This model predicted that while variables within cate-
gory predict each other at successive time points (e.g., WM at
Time 1 predicts WM at Time 2; or math at Time 1 predicts math
at Time 2), there are no cross-lagged correlations (e.g., WM at
Time 1 predicts math at Time 2). There are, however, concurrent
correlations between WM and math, as the positive manifold
findings would suggest. Results showed that model fit for the

positive manifold was poor even after dropping nonsignificant
paths and making adjustments suggested by modification indices,
particularly in terms of the size of the chi-squares, RMSEA, and
SRMR, �2(8) � 4,886.84, p � .001, CFI � .897, TLI � .821,
RMSEA � .213 (.208–.218), SRMR � .184, and there was little
indication of where model fit could be further improved using
modification indices.

Finally, we considered the fit of the transaction model. To test
the transactional model, we modeled direct effects within category
as well as cross-lagged effects across time. For both math and
WM, later scores are predicted both directly by prior scores in the
domain (e.g., Math 2 predicted by Math 1, indicated by paths along
the top and bottom) and indirectly as one ability works through the
other ability (Math 1 mediated through WM 1’s influence on WM
2 mediated by Math 2, indicated by paths). In contrast to the other
two models, the transactional model had an excellent fit to the
data, �2(2) � 66.51, p � .001, CFI � .999, TLI � .991, RM-
SEA � .049 (.039–.059), SRMR � .006, particularly when paths
were added between Year 1 math achievement and Year 3 math
achievement, as well as between working memory in Year 1 and
working memory for Year 3, as suggested by the modification
indices noted in Mplus (see Figure 4).

Analysis II: WM and Reading Achievement

The prior analysis of math achievement demonstrated that the
best fitting model was the transactional model. To provide further
support for this proposal, we considered the generalizability of the
results to another domain: reading. The question was whether once
again the transactional model would provide a superior fit relative
to the cognitive filter and positive manifold models.

The results for the cognitive filter model revealed that the fit
was adequate but not the standards for all indices were not met,
even after dropping nonsignificant paths and trying theory-
consistent modifications suggested by the modification indices:
�2(8) � 3,342.70, p � .001, CFI � .989, TLI � .961, RMSEA �
.084 (.078–.090), SRMR � .070.

Turning next to the positive manifold model, analyses showed
that the fit was even worse: �2(8) � 4,191.03, p. � .001, CFI �
.906, TLI � .835, RMSEA � .173 (.169–.177), SRMR � .164.

Finally, we considered the transactional model. As was the case
for mathematics, the fit was superior to the other models and the
indices met the threshold for an excellent fit: �2(2) � 82.39, p �
.001, CFI � .998, TLI � .988, RMSEA � .048 (.039–.057),
SRMR � .012 (see Figure 5).

Discussion

The goal of the present article was to try to gain increased
insight into the reasons for the well-established concurrent and

Math 1 Math 2 Math 3 

WM 1 WM 2 WM 3 

.75 .64 

.33 .25 

.63 .16 .25 

Figure 4. Coefficients for math.
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longitudinal correlations between WM, math, and reading achieve-
ment. We considered the viability of three models that have been
proposed in the literature: the cognitive filter model, the positive
manifold model, and the transactional model. We outline this
section based on our research questions below.

Best Fitting Model

The data demonstrated strong support for the transactional
model in the analyses for both math and reading. This finding has
a number of interesting implications. The first is that the cognitive
filter model seems to be partially supported by the data in its
characterization of the situational processing constraints that limit
how much information students can process when they try to learn
math skills or develop fluency in reading. The transactional model
has this part of the explanation in common with the cognitive filter
model. Students with more WM capacity demonstrated growth in
their math and reading skills more than their peers with less WM
capacity. However, as shown by the poor model fit, the cognitive
filter model fails to acknowledge the mutual, interacting effects of
knowledge and WM over time as the transactional model has done
herein. This is evident in the finding that whereas both models
predict that prior WM capacity would predict how much reading or
math skill would be acquired across an academic year, only the
transactional model would predict the reciprocal causation con-
struct that prior reading and math skill would predict increases in
WM capacity. Students who demonstrated more math skills or
reading skills at Time 1 were shown to have more WM ability at
Time 2; conversely, students who demonstrated more WM ability
at Time 1 were shown to have more reading and math skills at
Time 2; and so on.

Second, as Baddeley noted in a quote presented earlier in this
article, it is clear that knowledge and WM interact, but it was not
clear to him in 2010 how knowledge and WM interact (Baddeley,
2010). The present findings provide some interesting clues as to
how the interaction may unfold over time. Each time a student
gains new knowledge and skill in a domain, this increased knowl-
edge appears related to an increase working memory ability. In-
creased WM ability, in turn, may help them process more infor-
mation as they interact with new math problems or develop
fluency in reading. Further experimental studies are needed to
demonstrate this implied causal relationship. Our findings should
be considered strongly suggestive but still correlational.

Implications

Our findings were anticipated by Demoulin and Kolinsky
(2016), Stanovich (1986), and Perfetti (1985), but only for reading.
Demoulin and Kolinsky (2016) reviewed studies that indirectly
supported the idea that reading experience might lead to improved

verbal short term memory, but they argued the prediction awaited
confirmation in studies that provided direct confirmation. We have
not only confirmed this expectation for reading, but also confirmed
it for a second domain, math. In one of the few prior studies
examining the longitudinal prediction of knowledge to later WM,
Ellis (1990) failed to show that prior reading predicted later WM,
but as noted earlier, there are reasons to suspect Type II error given
that his sample size was rather small (N � 40). One of the
strengths of our study is that the models were tested using a large,
national sample in a longitudinal design. Hence, the findings
cannot be dismissed as being a consequence of the idiosyncrasies
of a single participating school.

A third implication of our findings pertain to the debates among
cognitive psychologists about the nature of WM. The character-
ization of WM that is most consistent with our results are those of
Ericsson and Kintsch (1995), Jones and Macken (2015), and
Unsworth et al. (2012). These authors argue that the factor that
contributes most to performance on WM is the ability to retrieve
information from LTM and overcome interference effects. In our
view, this account is extremely similar to the lexical quality
account of Perfetti and colleagues (Perfetti & Stafura, 2014). We
extend these accounts, however, by showing that WM seems to
play a role not only during classroom learning as limiting filtering
mechanism, but also when participants are asked to retrieve infor-
mation on measures of math and reading achievement.

Our findings also provide an alternative explanation of the
findings of Peng et al. (2018) who showed in their meta-analysis
that the linkage between WM and reading drops out when one
controls for both decoding and vocabulary. One way to interpret
this finding is to say that the link between WM and reading is
spurious. We argue, in contrast, that vocabulary can be properly
viewed as a measure of knowledge (or equivalently, an index of
lexical quality). Because WM measures are also indicators of
retrieval from LTM, controlling for vocabulary would indeed
produce a drop in the size of the correlation between WM and
reading. In addition, our results may also help explain why training
studies of WM seem to show that WM performance does improve
after training but there are no transfer affects to achievement
(Swanson & Alloway, 2012). If training merely provides or elicits
strategies to improve performance on WM tasks, such training
would not be expected to lead to achievement effects. Rather, a
more effective approach would be to target or increase knowledge,
which in turn would lead to improved WM. This prediction awaits
confirmation in additional studies.

Finally, our results are consistent with the findings of fact
retrieval deficits in children diagnosed with math disability and
lexical retrieval deficits in children diagnosed with dyslexia
(Geary et al., 2012; Perfetti, 2007). Studies that could provide
additional confirmation of this explanation would be ones that
carefully examine the responses of children on WM, math, and
reading measures that require retrieval to determine the level of
intrusion errors and other indicators of susceptibility to interfer-
ence effects. If the correlation between WM and reading or WM
and math drops to nonsignificance when a measure of susceptibil-
ity to interference is controlled, such a finding would support the
account proposed here.

As can be seen in Tables 2 and 3, the correlations were moderate
to strong among all measures. The size of the concurrent correla-
tions between WM and math were comparable in size to that

 

 

Read 1 Read 2 Read 3 

WM 1 WM 2 WM 3 

.69 .78 

.39 .27 

.54 .11 .27 

Figure 5. Coefficients for reading.
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reported in meta-analyses, though somewhat larger perhaps be-
cause of the use of IRT modeling for both measures to generate
ability scores as opposed to simply number correct. IRT allows a
researcher to take in to account the increasing difficulty of the task
based on the item characteristic curve; that is, in some cases as the
subject’s ability increases the probability for a correct response
might also increase. These are all taken in to account with IRT and
helps us to get to a closer measure of one’s true ability. Further,
one might expect that the correlations would be larger in the
current study, using IRT than in prior meta analyses because
simple scores do not account for measurement error. Measurement
error as the name suggests reduces the reliability of a measure.
Measurement error simply reduces the correlation between two
variables; reliability is in essence a correlation with itself, and if
the reliability is low it cannot correlate with another variable
(Goodwin & Leech, 2006).

Model Fit Between Domains

It is worth noting that findings were similar between math and
reading, although in some cases math and reading are seen as
distinct abilities. Theories of math ability and reading ability refer
to distinct processes (e.g., lexical access and inference making for
reading, mental computation, and problem solving for math), and
cognitive neuroscience show that there is some overlap of function
in brain areas but considerable differences as well (Byrnes &
Eaton, in press). Thus, we did not think there are a priori reasons
for assuming that the same variables would predict in exactly the
same way. However, the findings indicate that this is indeed the
case. There are a number of reasons why this might be. The WM
measure used herein, although it uses digits, can also be seen as
representations much in the same way lexical representations are
processed. For this reason, it is unlikely findings would differ.

Limitations

Although the current article adds to the ongoing discussion about
WM and mathematics and reading achievement, it is not without its
limitations. First, the current study employed the reverse digit span as
a measure of WM. It is possible that rather than using this one
measure to capture WM, it would have been more useful to use
multiple measures of WM to form a composite WM measure. Doing
this might give us a better approximation of WM to ensure that we are
capturing what we set out to. However, the ECLS-K data set does not
provide an alternative measure to WM. It is also worth noting that
whereas prior meta-analyses (Peng et al., 2016, 2018) examined WM

with respect to specific math and reading skills, our analyses were
domain general. Unfortunately, at the time of this writing, ECLS-K
did not include these subskills, including a vocabulary measure, and
we were unable to include them in our analyses to examine whether
such subskills might account for the correlations between WM and
math or reading ability. Future work should examine if the transac-
tional model still fits the data as we observe here when considering
specific subskills like vocabulary and reading comprehension. Finally,
we acknowledge that the data that appear herein are largely correla-
tional. More work is needed to test these theories in an experimental
manner.

Future Directions

Some other ways to tease apart the viability of the cognitive
filter and transactional models would be through experimental
methods (e.g., if children with high and low levels of WM capacity
were provided with instructional techniques that help reduce the
cognitive load of tasks [e.g., fading of worked examples], such
techniques should only be helpful for children with low levels of
WM capacity if the cognitive filter model is correct). One might
also manipulate material presentation or content difficulty depend-
ing on a students’ WM ability.

Research in this area may also benefit from examining how mate-
rial presentation should be altered for students with poor WM capac-
ity. Such a study could be executed longitudinally to examine how
these students’ trajectories change over time as a result of the presen-
tation format intervention. It may be the case that working memory
could be taken into account when designing more effective forms of
instruction that improve both WM skills and domain specific skills
(Ramani, Jaeggi, Daubert, & Buschkuehl, 2017). Moreover, it is
necessary to understand whether the relationship between WM and
achievement could have practical implications for interventions tar-
geted at mathematics or reading material presentation (Booth et al.,
2017). Subsequent work may be able to design lessons for students
that demonstrate low WM capacity, making instructions more specific
to individual learner needs. It is well documented that students with
different WM deficit profiles may interact with mathematics instruc-
tion such that particular instructional strategies would be more effec-
tive for students with different WM abilities (Peng et al., 2016). Given
the model fit for the transactional model, it may also be the case that
instead of focusing on training WM as many studies have attempted
to do (for a review, see Schwaighofer, Fischer, & Bühner, 2015)
perhaps students should be taught offloading strategies to long term
memory when solving math problems or reading. Thus, future work
should examine these theories and their predictive power within
classrooms or other learning settings.
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